67 research outputs found

    Impact of Queueing Theory on Capacity Management in the Emergency Department

    Get PDF
    Hospital systems in the United States are facing a dilemma regarding capacity management in the emergency department (ED) and the inpatient care setting. The average wait time in EDs across the United States exceeds 98 minutes, which is also the point at which patients begin to abandon healthcare treatment. The purpose of this quantitative study was to examine the use of queueing theory in capacity management on length-of-stay (LOS) rates, left-without-being-seen (LWBS) rates, and boarding rates in the ED and inpatient setting. The boarding rates represent the rate in which patients were roomed in the ED but required inpatient care. This study assessed the relationships between capacity management using queueing theory and a reduction in the aforementioned rates compared to traditional processes across systems within the continental United States. A linear regression analysis with a confidence interval 95% paired with an independent sample t test was used to analyze the secondary datasets. A sample size of approximately 33,000 patients was tested in the areas of LOS, LWBS, and boarding. The results of the analysis determined that access was improved in the ED and inpatient setting when queueing theory was deployed within the hospital system compared to traditional processes for managing capacity within the system. Queuing theory used for capacity management resulted in lower LOS, LWBS, and boarding rates. The implications of this study for positive social change include the opportunity to provide greater access to care for the population as a whole, and better health outcomes for the promotion of population health

    Electronic adherence monitoring identifies severe preschool wheezers who are steroid responsive.

    Get PDF
    Little is known about adherence to inhaled corticosteroids (ICS) in preschool children with troublesome wheeze. Children with aeroallergen senitization, or those reporting multiple trigger wheeze (MTW), are more likely to respond to ICS. We hypothesized that adherence to ICS and symptom control are only positively related in atopic children, or those reporting MTW. Patients aged 1 to 5 years with recurrent wheeze prescribed ICS were recruited from a tertiary respiratory clinic. Clinical phenotype and aeroallergen senitization were determined, and adherence assessed using an electronic monitoring device (Smartinhaler). Symptom control (test for respiratory and asthma control in kids [TRACK]), quality of life (PACQLQ), airway inflammation (offline exhaled nitric oxide) were assessed at baseline and follow-up. Forty-eight children (mean age 3.7 years; SD, 1.2) were monitored for a median of 112 (interquartile range [IQR], 91-126) days. At baseline n = 29 reported episodic viral wheeze and n = 19 reported MTW. Twenty-four out of 48 (50%) wheezers had suboptimal ICS adherence (<80%). Median adherence was 64% (IQR, 38-84). There was a significant increase in TRACK and PACQLQ in the group as a whole, unrelated to adherence. In subgroup analysis only atopic wheezers with moderate or good adherence ≥ 60% had a significant increase in TRACK. There was no relationship between clinical phenotype, and adherence or TRACK. In this pilot study, overall adherence to ICS was suboptimal and was positively related to symptom control in atopic wheezers only. Assessments of adherence are important in preschool troublesome wheezers before therapy escalation to help identify those with an ICS responsive phenotype

    Retrospective investigation of the 2019 African swine fever epidemic within smallholder pig farms in Oudomxay province, Lao PDR

    Get PDF
    The 2019 African swine fever (ASF) outbreak in the Lao People’s Democratic Republic (Lao PDR or Laos) represented a major epidemiologic event where a transitioning lower-middle income nation (LMIC) experienced a viral epidemic in a naïve pig population. The diversity of pig management styles creates challenges for local and regional policymakers when formulating recommendations to control an ASF outbreak. The aim of this study were to investigate the management of pigs in villages of Oudomxay province that were affected by ASF in 2019, as a case study in a smallholder pig-rasing system in northern Laos. The frequencies of well known risk factors were measured in the affected villages and the timelines and household level stock losses due to the outbreak were investigated. These findings were compared to data available from a similar outbreak in the southern province of Savannakhet. Disease control implications of these findings are discussed. Mean losses were 3.0–23.3 pigs per household, with a mean lost herd value of USD 349, 95% CI (294–415). These pig losses reflect those estimated in Savannakhet (6.7 pigs per household). However, the financial loss estimated per household was higher, USD 349 versus USD 215, possibly due to higher pig values and a higher input/output management approach in Oudomxay. The investigation revealed the presence of numerous ASF risk factors, such as swill-feeding and free-ranging. In addition, poor biosecurity practices – such as inappropriate garbage disposal and slaughtering – that could contaminate the environment were present. ASF cases occurred across all villages between June and December 2019, with outbreak periods ranging from 22–103 days. These values are consistent with the outbreak in Savannakhet; however, notable differences in management styles were observed. These findings demonstrate the need for more disease control resources from the village to the Governmental level. Villages need support in enacting context appropriate biosecurity measures, whilst the ongoing surveillance and investigation of ASF require investment in logistical and veterinary resources at the Governmental level

    Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease

    Get PDF
    We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼ 456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P \u3c 1 × 10−3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases

    Neural networks for modeling gene-gene interactions in association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our aim is to investigate the ability of neural networks to model different two-locus disease models. We conduct a simulation study to compare neural networks with two standard methods, namely logistic regression models and multifactor dimensionality reduction. One hundred data sets are generated for each of six two-locus disease models, which are considered in a low and in a high risk scenario. Two models represent independence, one is a multiplicative model, and three models are epistatic. For each data set, six neural networks (with up to five hidden neurons) and five logistic regression models (the null model, three main effect models, and the full model) with two different codings for the genotype information are fitted. Additionally, the multifactor dimensionality reduction approach is applied.</p> <p>Results</p> <p>The results show that neural networks are more successful in modeling the structure of the underlying disease model than logistic regression models in most of the investigated situations. In our simulation study, neither logistic regression nor multifactor dimensionality reduction are able to correctly identify biological interaction.</p> <p>Conclusions</p> <p>Neural networks are a promising tool to handle complex data situations. However, further research is necessary concerning the interpretation of their parameters.</p

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Biofouling in marine aquaculture: a review of recent research and developments

    Get PDF
    Biofouling in marine aquaculture is one of the main barriers to efficient and sustainable production. Owing to the growth of aquaculture globally, it is pertinent to update previous reviews to inform management and guide future research. Here, the authors highlight recent research and developments on the impacts, prevention and control of biofouling in shellfish, finfish and seaweed aquaculture, and the significant gaps that still exist in aquaculturalists’ capacity to manage it. Antifouling methods are being explored and developed; these are centred on harnessing naturally occurring antifouling properties, culturing fouling-resistant genotypes, and improving farming strategies by adopting more sensitive and informative monitoring and modelling capabilities together with novel cleaning equipment. While no simple, quick-fix solutions to biofouling management in existing aquaculture industry situations have been developed, the expectation is that effective methods are likely to evolve as aquaculture develops into emerging culture scenarios, which will undoubtedly influence the path for future solutions
    corecore